

Abstract—An approach for multilevel synthesis of programs is

suggested. The mathematical model of reconfigurable program in a
form of relative finite state operational automata is introduced. On
the base of this model the method of multilevel automatic synthesis is
developed. Suggested approach can be used for generation of
behavioral programs for set-top boxs in the domain of cable
television.

Keywords—Multilevel behavioral program synthesis, finite state
operational automata, smart home devices

I. INTRODUCTION
owadays one of the main trends of IT industry
development is increasing of the level of intelligence of

the very wide class of devices, which are used in every day life
such as devices for remote TV control, vacuum cleaner robot,
etc. For building smart devices, as a rule, intelligent
technologies, developed earlier for knowledge-intensive
domains are used. For example modern space technologies
assume usage of artificial intelligence on all stages of
preparing of rockets for lunching, in the oil production
industry artificial intelligence technologies are also widely
used especially when oil fields are remote and hardly
accessible. From the technical point of view, porting of
technologies is not very sophisticated problem, but very often
these solutions are too complex for home devices and the
process of supporting of smart home devices is much more
difficult, taking into account very hard requirement to total
cost of ownership. Support assumes regular estimation of
device status and device repairing after failures.

Vasiliy Yu. Osipov is with the Saint-Petersburg Institute for

Informatics and Automation of the Russian Academy of Sciences
(SPIIRAS), 39, 14 Line, St. Petersburg, 199178 Russia,
osipov_vasiliy@mail.ru

Natalia A. Zhukova is with the the Zodiac Interactive LLC, USA –
Russia, 11, Sedova str., St. Petersburg, 192019, Russia,
nazhukova@mail.ru, pietr@mail.ru

Alexander I. Vodyaho is with the St. Petersburg National Research
University of Information Technologies, Mechanics and Optics, St.
Petersburg, Russia Zodiac, nazhukova@mail.ru

For complex unique systems such as oil processing systems

special monitoring and emergency situation reaction, as a rule,
unique algorithms are developed. But development of
specialized algorithms for all types and all modifications of
home devices of each producer is impossible.

Nowadays Smart Home platforms are used for building
intelligent home devices. From the end user point of view the
Smart Home platform suggests the wide functional
capabilities. From the IT point of view Smart Home platform
can be conceded as an effective framework or as a set of
COTS solutions. For example, data acquisition can be realized
on the base of Internet of Things technologies. Nowadays a
generalized solution for defining and improvement results of
failure for intelligent home devices is to be founded. This can
be done by means of usage of automatically generate programs
which can realize smart devices functionality.

The systems under consideration by the most part are
distributed multitier client-server systems, the client side of
which, especially the lowest layer, includes heterogeneous
periphery modules with rather weak build-in processors and
limited volume of memory.

In the process of supporting of described above class of
systems very often one can observe two typical problem
situations, which appear in the process of diagnostic.

1. According to the results of group diagnostic of periphery
equipment it is detected that status parameters of one or more
periphery device is not correct. Group diagnostic is realized on
the server side and assumes gathering of limited volume of
diagnostic data. But for complete fixing of the error it is
necessary to realize a number of specialized diagnostic
procedures.

2. The server receives messages about error situations in
one or more peripheral modules. Error messages are created in
the process of modules self diagnostics. Total number of error
situations is limited. Detail information about the error
situation as a rule is absent. Because of it, additional
diagnostic procedures, adaptive to the observed situation, are
to be realized.

Usage of general algorithms for fixing described above
situations is not effective and in many real situations is
impossible. For fixing modules errors in such situation it is
necessary to generate diagnostic procedures taking into
account specific features of the situation.

About one approach to multilevel behavioral
program synthesis for television devices

Vasiliy Yu. Osipov, Natalia A. Zhukova, Alexander I. Vodyaho

N

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 17

One can meet a number of similar situations, when it is
necessary to generate diagnostic procedure in run time.

The general idea of the proposed solution is given in Fig. 1.
So the problem of diagnostic of such kind of systems can be

conceded as a problem of synthesis of diagnostic algorithm
"on the fly". This algorithm has to gather all necessary
information about module status and realize the procedure of
error fixing. This problem is to be solved in the limited
interval of time in conditions of limited computing recourses.
The diagnostic procedure (script) is generated on the server
side and generated script is downloaded to the periphery
module for execution.

The set of restrictions for the process of diagnostic is
defined by the infrastructure and available hardware. The set
of restrictions is formed on the base of external restrictions
which are formed outside of the system under consideration,
parameters of the network infrastructure and the list of
diagnostic features, which can be realized on the client side.

Device

Common diagnostic procedures execution

Common diagnostic procedures
generation (synthesis)

A
daptive diagnostic procedures

A
dd

iti
on

al
 fe

at
ur

es
 o

f t
he

 si
tu

at
io

n

Situation

Situation

Context

Features of the situation

Context

Situation

Fig. 1 The general structure of the procedure for devices diagnosis
Diagnostic algorithm must take into account the context. The
context is defined by the parameters of the observed status of
the periphery modules and user actions which have initiated

the error situation.
In order to realize the described above approach the

methodology of monitoring algorithms synthesis is to be
developed. This methodology must allow generate diagnostic

procedures "on the fly" taking into account context and
dynamically changing restrictions. The methodology has to
include 3 interconnected parts: methodology of identification
of presence of a problem, methodology of the problem
localization and methodology of fixing of the problem.

It is necessary to mention that nowadays there is no ready to
use methodology of such kind.

For solving problems of such kind one can use known
methods of program automatic synthesis [1 - 14]. From the
point of view of our problem the most perspective are method
of resolutions [1 - 2] and reverse inference method [3]. There a
number of realizations of these methods [4 - 14]. All
realizations assume proving existence of program on the given
set of conditions and extraction the program from proving.

Deductive program synthesis [6, 7] assumes that initial data
{ }sd and target result { }wd are given. Conditions (rules) are
defined as

 (; 1,) ; 1, ; 1, ,zv zv z zv ze a
F d e E d z Z v V= → = = (1)

This expression couples initial and final states of the system.
Different functions realized by the system may be conceded as

()zvF ⋅ . In order to solve the problem it is necessary to receive

the program which allows migrate from { }sd to { }wd . The
target program PRG can be defined as:

{ } { }
(; 1,) ;

; ; 1, ; 1,
zv zv z zv

s w z

e a
F d e E d

PRG
d d z Z v V

 = → =  
= =  

 (2)

For successful solving this problem it is necessary to have
formal description of the processes in the form of the set of
conditions (rules), linking different data. Formal description of
simple processes is not very sophisticated problem. But
synthesis of reconfigurable programs is much more complex
problem, because it is necessary to use special rules describing
system structure. Nowadays these rules are not perfect and this
problem is to be solved.

It is necessary to mention that known methods of program
synthesis are too complex, that limits the scope of their usage.
Basically, the known methods are oriented to single-level
automatic synthesis of small programs. To reduce the
complexity of this synthesis, various methods of parallelizing
the processes of proving the existence of programs and
extracting them from the output are used. However, these
methods only partially smooth out the acuteness of the
problem of rapid synthesis of reconfigurable programs for
smart devices [6 - 14].

In order to increase the level of intelligence and increase
performance of diagnostic and repairing system it necessary to
develop modern more effective methods of automatic program
synthesis.

When programs are developed manually multilevel
approach is used. The idea of step by step program synthesis

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 18

was suggested in 1983 [15]. Then, this approach has been
developed in other works [16, 17]. But up to present time this
idea was not properly formalized and realized. In the present
paper an approach to practical implementation of this idea is
suggested.

In the section 2 of the paper the formal model of
reconfigurable program in terms of relatively finite state
operational automata is suggested. In the section 3 a new
method of multilevel automatic synthesis of programs is
discussed. In the section 4 questions of correctness of results
and computational complexity of program synthesis are
discussed. Results of multilevel synthesis of diagnostics and
repairing programs for digital cable TV (DCTV) and
recommendations about suggested approach usage are given in
the section 5.

II. MODEL OF RECONFIGURABLE PROGRAM
Let us consider formal model of reconfigurable program. It

is well known that any program with fixed structure can be
described by the final state automate [18]. For formal
description of reconfigurable program including self repairing
and self reproductive programs it is necessary to take into
account a number of additional conditions. These programs
can be formalized by means of relative finite state operational
automata.

Each automate OKAr in r-th moment of time can be
described in terms of 10 parameters,

1

1 1 1 1

{ , , , , , (),

(), (), (), ()}

b c
a b c br r r

b b b b

r r r r

r r r r

OKA d d d F F DA d

DB d DC d FB d FC d

− − − −

− − − −

−

− − − −

=
, (3)

where: ard
−

- input data vector; brd
−

- vector of internal state

parameters; crd
−

 - vector of output state parameters. Functions
of transitions b

rF in (3) define automata transitions from one
internal state to another internal state,

 1 (,)b
b a brr r rd F d d

− − −

+ = (4)

Function of states of output c
rF can be described as

 (,)c
c a brr r rd F d d

− − −

= (5)

States brd
−

, crd
−

, ard
−

, and functions b
rF , c

rF , which define
automate in r-th moment of time, must satisfy following
conditions:

 1()a br rd DA d
− −

−∈ (6)

 1()b br rd DB d
− −

−∈ (7)

 1()c br rd DC d
− −

−∈ (8)

 1()b
br rF FB d

−

−∈ (9)

 1()c
br rF FC d

−

−∈ (10)

Condition (6) says, that state of automate (program) in r-th

moment of time is limited by the set 1()brDA d
−

− allowed states,
defined for r-1 moment of time. According to (7) internal state
of automate for r-th moment of time must be a member of the

set 1()brDB d
−

− of allowed internal states. Expression (8)
defines limitations for allowed states of automate outputs.

These states must be members of the set 1()brDC d
−

− .

According to the condition (9) transition function b
rF for r-th

moment of time must be a member of the set 1()brFB d
−

− of

allowed functions for r-1 moment of time. The set 1()brFB d
−

−
of transition functions defines the instruction set of the
automate for r-th moment of time. b

rF is defined by the vector

brd
−

, which describes parameters of internal states of automate.
According to (10) function of outputs с

rF of DCTV at r-th

moment of time must be a member of the set 1()brFC d
−

− of
allowed functions, which are active at r-1 moment. Transition
from automate OKAr to automate OKAr+1 at r+1 moment of
time one can describe as

1: , .b
ar r rrF OKA d OKA

−

+→
This process has following steps: i) definition of the basic

sets of allowed parameters of automata, ii) marking these sets
by upper index «о», not taking into account their correlations
with internal states. Let us define the complex of the basic sets
as

{ }0 0 0 0 0 0, , , ,DOKA DA DB DC FB FC=
 (11)

From elements of these basic sets (11) one can form allowed
sets of parameters of higher i-th levels,

{ }, , , ,i i i i i iDOKA DA DB DC FB FC= . As a result the automate
(program) may be characterized by allowed sets of parameters
on different hierarchical levels,

0 1i KDOKA DOKA DOKA DOKA⇔ ⇔ ⇔ ⇔ ⇔ (12)
Taking into account that automate for current moment of

time is described by { }, , , ,i i i i i iDOKA DA DB DC FB FC= this
complexes in general case are changing in time. They can be
described as a function of its internal state

1()i i
brDOKA DOKA d

−

−= .
In a number of cases by means of expending of the set of

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 19

automate internal states from (3) - (10) one can exclude
functions (5) and correlated with them conditions (8), (10). As
a result we receive automate reduced by parameters (4), (6),
(7), (9), but with saving ability for reconfiguration.

*
1 1 1{ , , , (), (), ()}b

a b b b br rr r r r rOKA d d F DA d DB d FB d
− − − − −

− − −= . (13)
While using logical variant of presentation function of

automate transition (4) has a view

 1(,)b
a b br r r rF d d d

− − −

+→ . (14)
If the set of internal states is expended not only by output

states but also with input states then in (14) function

()b
rF ⋅ from ard

−

maybe not shown.
Distinguishing feature of the described above relatively

finite state operational automate is that the set of allowed
parameters are true only on one stage (transition) and they are
defined relatively to previous state. There is a possibility to
change in a full automate not only the set of allowed input,
output and internal states, but also the sets of transaction and
output functions of automate. In particular cases full automate
can be reduced to other automate, with allowed sets of
parameters which do not depend upon previous internal states.

Automate (3) – (10) can be considered as a model of a fully
reconfigurable program. Also it can be conceded as a model of
the system which operates according to this program. Each
such automate can be conceded as a complex of coupled
automate of lower level. Migration between the levels from the
formal point of view can be conceded as a process of tuning of
the set of allowed parameters. The length of the record about
the same functionality in the form of relatively finite state
operational automate depends essentially upon the level of
hierarchy used for automate operation description.

III. PROGRAM SYNTHESIS METHOD
Taking into account initial statements (1), (2) and using

introduced in Section 2 model (3) – (14), one can formulate
the problem of program synthesis in the following form. Initial
data { }sd divided into groups { }0sd ,{ }1sd ,…,{ }sid ,…,{ }sKd
according levels of hierarchy of process description are given.
Final result { }wd , in the form of groups of data

{ }0wd ,{ }1wd ,…,{ }wid ,…,{ }wKd , correlated with levels of
hierarchy are also given. Following conditions are defined

(; 1,) ; 1, ; 1, ; 1, ;i i i

izzv zv z zv ie a
F d e E d z Z v V i K= → = = = (15)

 () ;i i
zvF FB⋅ ∈ (16)

 , , , ;i i
si zv zv wi ie a

d d d d D∈ (17)

1, ,i K= which couples initial data

{ }0sd ,{ }1sd ,…,{ }sid ,…,{ }sKd with the result

{ }0wd ,{ }1wd ,…,{ }wid ,…,{ }wKd .
Taking into account these conditions it is necessary to

generate the program which allows migrate from initial data
{ }sd to result{ }wd .

In (15) – (17) following designations are used: ()i
zvF ⋅ -

functions of z-th kinds и v-th types, which can be realized by
a program on i-th level of hierarchy; ,i i

zv zve e
d d - data; K -

number of levels of hierarchy; iFB , iD - the set of allowed
functions and the set of allowed data of i-th level.

According to (15) on the i-th level of hierarchy with the help
of function ()i

zvF ⋅ with known i
zve

d one can define data i
zve

d .
Expressions (16), (17) define restrictions for functions and
data on i-th level.

Generalized algorithms of solving the stated problem can be
presented as a sequence consisting of 11 steps.

1. Begin 1i K= + .
2. 1i i= − . Lowering level of hierarchy by 1.
3. If 0i < , then ending of problem solving with presenting

positive or negative result.
4. Investigating conditions of program solving on i-th level.
5. Proving of existence of the program that allows migrate

from { }sid to { }wid with productivity not lower than needed
for i-th level. In all cases proved and unproved results in all
levels of hierarchy are stored. Adding them to initial data and
final result on the level -1 relatively to current level.

6. If no proving is found, go to step 2.
7. Extraction of the basic program from results of proving.
8. If there no logical conditions in basic program, then go to

step 11.
9. Logical condition processing and receiving subprograms.
10. Linking subprogram and generating a single program of

i-th level.
11. Testing of accessibility { }wid using results of program

synthesis for levels under investigation. If results are positive,
then the programs of different levels are to be linked into result
program and finishing of problem solving. In other case go to
step 2.

Usage of suggested approach to a program syntheses allows
solve k K≤ problems enough simply. Synthesis problem is to
be solved beginning from the top level.

Low complexity of each problem solving is reasoned by
small number of conditions to be analyzed. So, on K-th level
rough synthesis of program on big block level is realized. In
this case it is not necessary to prove existence of transition
from { }sKd to { }wKd .

Mismatch { }wKd and inference results on this level can be
corrected while working on lower levels of hierarchy. With
moving to lower levels, volume of data to be proven is
decreasing. It is evident that it is necessary to prove that
received results are correct. While realizing multilevel
synthesis procedure one can put in line to all data and

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 20

conditions predicates which are equal to 1 when condition is
true (satisfied) or equal to 0 in opposite case.

For proving existence of productive program on each level
one can expand initial data by means of usage condition (15).
If multi step extension is used it is necessary to check
feasibility of main and solubility of auxiliary (logical)
conditions. Main condition is feasible if all its variables are
free and arguments are defined. Variables can be conceded as
free in 2 cases: i) if they are not coupled by auxiliary
conditions, ii) if they are coupled, but are used in common
with auxiliary conditions, these conditions are soluble their
variables are free. Auxiliary conditions are soluble if their
variables are defined.

In the case of initial data extension it is necessary to check
them for presence given final results. When all final results are
presented in the extended initial data set, then proving of
existence of the program is to be finished. Received result
includes final program using which one can be migrate from
initial data to the final result.

For extraction a program from proving one can use the
reverse inference algorithm [3, 6, 7]. Realizing the procedure
of reverse inference in mirror mode relatively to direct
inference it is possible to receive pure program without extra
elements. For processing logical conditions in the basic
program its subprograms are generated analogically. If
rigorous proof of existence of needed program is absent for the
defined conditions, it is necessary to realize the procedures of
automatic adding of condition and run problem procedure of
program solving again.

IV. PROGRAM PRODUCTIVITY AND SYNTHESIS COMPLEXITY
Presented in section 3 algorithm of the problem solving

assumes automatic synthesis of programs on the upper level of
hierarchy without rigorous proof of the program existence. The
prove is to be taken unto account if program productivity
would be not lower then needed. In general case, productivity
is defined as ability to receive needed result. Without rigorous
proof this result can be received partially or exactly but with
assumptions done in the process of inference. Not defined data
can be conceded as such assumptions in the process of
inference. If in spite of presence of not determined data results
of prove are taking into account, then latter can be conceded as
unproved final results.

It can be explained with the help of the simple example. Let
us assume that on the i-th level of hierarchy initial data
{ }1 7 12 25, , ,i i i id d d d and needed final result { }5 9 18 22 33 51, , , , ,i i i i i id d d d d d
are given. Functions

1 1 12 5

2 9 12 25 33

3 5 7 25 9

4 1 5 25 37

9 25 33 18

12 33 25 22

(,)
(, ,)
(, ,)
(, ,)

...............................
(, ,)

...............................
(, ,)

i i i i

i i i i i

i i i i i

i i i i i

i i i i i
j

i i i i i
m

F d d d
F d d d d
F d d d d
F d d d d

F d d d d

F d d d d

→
 →
 →


→


→

→









 
 
 
 
 



,

are defined. They couple initial data with final results on the
proper level of hierarchy.

It is evident that it is necessary to proof existence of the
program, which allows transform initial data to the final results
with productivity not lower than needed. If not rigorous proof
of existence of program is realized, on these conditions
schema of initial data extension by means of usage of functions
can be presented in the form

1

7 1 1 12 5

12 2 9 12 25 33

25

(,)
(, ,)

i

i i i i i

i i i i i i

i

d
d F d d d
d F d d d d
d

 
  →    ⇒ ⇒   

→   
  

1

7

121

3 5 7 33 9 257

4 1 5 25 37 512

9 25 33 1825 33

5 3712 33 25 22

33 9

18

22

(, ,)
(, ,)
(, ,)

(, ,)

i

i

ii

i i i i i ii

i i i i i ii

i i i i ii i
j

i ii i i i i
m

i i

i

i

d
d
dd

F d d d d dd
F d d d d dd
F d d d dd d

d dF d d d d
d d

d
d




 
  →        →    ⇒ ⇒ ⇒    →    

    →   
   

















 
 
 

According to this scheme of extension of initial data on 33
id

are to be accepted, not taking into account the fact that 9
id в

2 9 12 25 33(, ,)i i i i iF d d d d→ are not defined. It is necessary to use the
rule according to which the ratio of the number of undefined
arguments in a function must not exceed the fixed value.

At any extension of initial data while proof of program
existence the procedure of checking for presence in them final
results is to be realized. If result is received with needed value
of productivity, then results of proof are to be taken into
account. The checking procedure assumes calculating the ratio
of already proofed data to the total number of data and
comparison of this ratio with needed value.

One can extract the program from the given scheme with the
help of reverse inference using proved data, included in final
result. The result is the sequence of functions which can be
transformed into the executable code. When such program

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 21

extraction mechanism is used function 4 1 5 25 37(, ,)i i i i iF d d d d→ can
be excluded from consideration as an extra one. If variables
would present in such scheme, and they would be coupled with
conditions, it would be necessary to check their solvability and
generate subprograms.

If it is necessary one can realize logical conditions,
branching and cyclic programs with the help of algorithms
suggested in [7].

Not proofed during inference data (in our case it is 9
id and

51
id) are moved lower and are added to final results which are

to be received on i-1 level. Even on i-1 level requirements to
effectiveness of program to be generated may be strict and
proof is rigorous.

Usage of not defined data with not rigorous proof of
existence of needed programs is correct when two conditions
are satisfied. The first condition is that it must increase
certainty of final results. Assumptions in the process of
inference, on one hand, can decrease certainty of the final
results. On the other hand they can essentially increase
certainty of the final results because of increasing of the
number of output data.

Usage of only one not defined argument of a function during
inference allows receive certain benefits from the point of view
of receiving final results. Second condition assumes ability of
receiving of rigorous proof of existence of needed program on
lower levels of hierarchy.

In comparison with known methods, suggested solution
allows essentially decrease time complexity of synthesis and
generate more complex programs in automatic mode. The
upper boundary of time HT needed for the program solving for
suggested approach can be estimated by the formula

 2 2

0 0
()

K K

H i ii i
T c m c m

= =
∑ ∑≈ ≤ (18)

where: c – constant coefficient; im - number of problem

conditions on i-th level. It is necessary to mention, that im is
essentially less than total number of conditions, used in
traditional methods of program synthesis. This assessment is
valid, when the number of inference steps for multilevel and
single level synthesis are the same.

Taking into account that on upper levels each inference step
is equivalent to in steps at the level “0”, one can get a lower
boundary of time LT multilevel synthesis of programs,

2

2

0 0

K Ki
L ii i

i

m
T c c m

n= =
∑ ∑≈ ≤ (19)

The average estimate of time T multilevel synthesis with
regard to (18), (19) is equal to () / 2.L HT T T= +

V. EXPERIMENTAL RESULTS
Suggested approach was tested on the problem of diagnostic

and equipment repairing DCTV networks. Modern DCTV can
include dozens of servers, many thousand or even millions of

subscribers with different client side equipment. Usually it is a
receiver (set-top box) that contains a TV-tuner input and
displays output to a television. In order to receive high quality
of service, management centers gather information about client
equipment status and realize processing of this information.
Management centers execute procedures of video streams and
equipment status monitoring in order to estimate correctness of
their operation and if needed they realize technical support.

A lot of different problem situations correlated with video
streams take place in real DCTV. Analyzing results of
monitoring one can detect such problems as image blocking,
frozen pictures, fuzziness of image, blinking images, black
screen, low level of brightness or contrast, etc. Both hardware
and software errors can cause such phenomena. Very often
original reasons of such errors are not evident. In this case for
adequate situation estimation it is necessary to make additional
diagnostics. After it repairing procedures are to be realized.
Quality of service and total cost of ownership (TCO) of DCTV
depend upon effectiveness of realization described above
procedures. Traditional approach for solving such creative
problems assumes an active participation of humans. As a rule
it takes a lot of time and money.

One of typical error situations is absence of image on TV
screen. Instead of an image one can see only “black screen”.
This error is called “No Video” error. Absence of image can
be caused by a lot of reasons, i.e. channel level errors,
authorization errors, transport level errors etc. It is impossible
to define the reason definitely. For operative image repairing it
is necessary to define initial reason of the error appearance.
Full information about an error can be received by means of
analyzing the status of all components of the software
deployed on receivers which are used in the process of image
forming. The problem is that is impossible to receive all
parameters because there are hundreds of parameters and the
bandwidth of LAN as a rule is low.

For detecting the reason of “No Video” error two methods
were used: traditional single level method [6, 7] and suggested
multilevel method. The priory information about correlation of
the error “No Video” with failure in tuning component was
used. This information allows limit number of parameters to be
analyzed up to parameters of one subsystem. In our example
tuning component is described only by 7 parameters.

All these peculiarities, taking into account (15), (17), were
formalized by 42 conditions. Among them 12 conditions refer
to top (second) level of hierarchy and 30 refer to first level.
Programs generated by single level and multi level methods
were identical. The result program includes 3 functions
(scripts) and supports following features:

1. According to error type it can detect program components
and list parameters, which define program component status.

2. It can estimate real and reference values of parameters,
which characterize the status of the program components.

3. It can define the parameters which do not satisfy
requirements.

While using single step approach on each step 42 conditions

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 22

are to be analyzed. While using suggested approach, on the
second level on each step only 12 conditions are to be
analyzed and up to 30 conditions were analyzed on the first
level. So, complexity of calculation was decreased in 1.6
times.

The gain compared with the synthesis conditions of the
programs at conditions low level in the example was 2.7 times.
In the case synthesis of program on 240 conditions, divided
into four level (19) with 0 1n = , 1 3n = , 2 9n = , 3 27n = , the
synthesis time was reduced by 11 times.

So one can see from the example given above that
multilevel approach allows analyze less quantity of conditions
and reduce number of inference steps in comparison with
single level one and it has essentially less computational
complexity.

The implementation of the proposed approach is based on
ontological approach. For describing subject domain ontology
supporting SPARQL was used. The ontology was also used for
defining repairing instructions, using information about
parameters which have values different from reference. For
solving this problem logical inference was used. Defined
sequence of instruction was used for forming scripts. These
scripts were loaded into receiver where they were executed in
order to realize diagnostic and repairing.

Architecture of receivers assumes that a special component
is integrated in the software stack. The component called
virtual machine. It is able to load and to execute generated
scripts. For writing scripts domain specific script language is
to be used. If it is necessary to control equipment status
permanently processes can be run in daemon mode.

VI. REAL WORLD EXAMPLE
The example describes the solution of the “No Video”

problem supported in a monitoring of one of the cable TV
operators.

Description of problem situation “No Video”. Error
situations bringing to the “No Video” error one can divide into
two groups.
Group 1. Errors of functional components operation.

1.1. Error situations caused by errors of linear
channels:
a) channel is unavailable;
b) for SDV (Switched Digital Video) channel the

parameter “sdv” is not defined;
c) the “SDV” is defined for the channel which is not

a SDV channel.
1.2. Channels description:

a) PAT (Program Association Table) is absent;
b) PAT is defined, but the parameter ”mpeg

program number” for MPEG channels is not
defined;

c) PAT is defined, but PID (PMT) number in
the stream is absent

1.3. MPEG4 format is not supported.

2. Error of adding the channel in the list of supported by STB
(Set Top Box) channels.
3. Wrong PIN code entered by a user.
Group 2. Errors of receiving transport level data. Error data
stream from broadcast channel for demonstrating video.
As an example let us consider the situation 1.2 c), caused by
an error in the data stream. In order to fix this error one has to
analyze correctness of tuning system operation.

Simulation of an error situation “No Video”. Using
information about links between the “No Video” error
(availability of PAT, absence of PID) and status tuning system
components, the scope of parameters to be analyzed can be
limited up to parameters presented in the Table 1.

General information about STB status, which is requested
for any type of error, is defined by parameters shown in the
Table 2. This is minimal set of parameters to be used for
solving the problem of monitoring.

The process of the error diagnostic and fixing. The structure
of the process is shown in Fig. 2. On the figure operations
which are used for solving problems are presented. They are of
three different types.

Type 1. Core operations. These operations are required for
monitoring system lunching and configuration. The list of core
operations includes the following operations:

a) operation " Registration of monitoring system
components ",

b) operation " 2. Configuration of resident monitoring
processes on STB",

TABLE 1. LIST OF INFORMATION PARAMETERS
OF TUNING SYSTEM FOR FIXING “NO VIDEO” ERROR

Parameter Descripttion
vm_ia_firstQamEqGain Shows the tuner signal level QAM

(Quadrature Amplitude
Modulation)

vm_ia_firstQamModulationErrorRati
o

Shows error QAM of the tuner

vm_ia_firstQamSignalLevel Shows the level of the QAM
signal

vm_ia_firstQamSignalToNoiseRatio Shows signal/noise ratio
vm_ia_firstQamCorrected Shows the number of fixed errors

QAM

vm_ia_firstQamUnCorrected Shows the number of not fixed
QAM errors

vm_ia_firstQamFrequencyTuned Shows the frequency on which the
tuner is tuned

vm_ia_firstQamVideoPids Shows the list of video PIDs in the
stream

vm_ia_firstQamAudioPids Shows the list of audio PIDs in the
stream

TABLE 2. PARAMETERS DESCRIBING GENERAL INFORMATION
ABOUT STB STATUS

Parameter Description
Channel number Chanel number
Source_id Technical channel identifier, which is used by

the tuner for tuning to the selected channel
Lineup_id Channel net identifier

SDV DCM Dynamic channel net, which broadcasts using
digital video technology

SNR (Signal / Noise
Ratio)

Signal/noise ratio, which defines signal quality

PAT/PMT for private Program Allocation Table / Program Map

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 23

source ID Table for source_id of the channel
SG Number Service group number for the device

c) operation " 5. Unloading of the monitoring system
components".

Type 2. Operations of STB self monitoring. These
operations assume regular monitoring of the STB status in
order to detect certain types of errors. For this purpose the
operation "Realization of STB resident monitoring processes"
is used.

Type 3. Operation of realization monitoring programs
generated on the server side. These operations are used for
realization of the process of gathering information about STB
parameters which are to be used for localization and fixing
errors. For this purpose the operation " 4. Realization of
received from the server monitoring algorithms for fixing error
situations” is used.

The example of program code of the process of diagnostic
of the "No Video" error which is to be used for solving
problems of identification, localization and fixing of problem
situations linked with absence of image is presented below.

1. Registration of monitoring
 system components

2. Configuration of resident
 monitoring processes on STB

Notification
from STB
functional

components
about error
situations

5. Unloading
of the monitoring

system components

3. Realization of resident
STB monitoring processes

4. Realization of received
 from the server monitoring

algorithms for fixing
 error situations

Generated
STB

monitoring
program

Information about
the error

Sending
parameters
to the server

“Switch on monitoring”
 instruction

“Switch off monitoring”
 instruction

Fig. 2 The process of the error diagnostic and error fixing for "No
Video" error

/* diagnostic system starting and configuration*/

start()
{

/* diagnostic system components registration */

 register("dc:AppLaunch(int screen, int startTime, int
timestampPartMsec, int reason, int channel)", AppLaunch);
 register("dc:AppSessionComplete(int app, int appEndTime,
int timestampPartMsec, int sessionId, int reason, int
clientSessionId)", AppSessionComplete);
/* configuration of resident diagnostic process*/
 register("dc:NoVideo(int reason)", NoVideo);
}

/* realization of the resident diagnostic process*/

SendAlertCommon(event_id)
{
 reportInt(event_id);
 reportInt(alertTime);
 }
}

/* identification of the error "NoVideo" situation */

SendNoVideo(screen, reason)
{
 no_video_reason =
 screen == -1 ? reason :
 screen == TUNING_FAILED_SCREEN && reason ==
APP_LAUNCH_REASON ?
NO_VIDEO_TUNING_FAILED :
 screen == INSTANT_UPGRADE_SCREEN && reason
== APP_LAUNCH_REASON ?
NO_VIDEO_NOT_AUTHORIZED :
 screen == PARENTAL_PIN_PROMT_SCREEN &&
reason == APP_LAUNCH_REASON ?
NO_VIDEO_PARENTAL_PIN :
 -1;

 if (no_video_reason == -1)
 return false;
 if (SendAlertCommon(NO_VIDEO_EVENT))
 reportInt(no_video_reason);
 return true;
}

/* Receiving parameters defining STB status for localization
of problem situation with the help of algorithm generated on
the server side */

SendNoVideoDiag(params)
{

reportInt(vm_ia_firstQamEqGain);
reportInt(vm_ia_firstQamModulationErrorRatio);
reportInt(vm_ia_firstQamSignalLevel);
reportInt(vm_ia_firstQamSignalToNoiseRatio);
reportInt(vm_ia_firstQamCorrected);
reportInt(vm_ia_firstQamUnCorrected);
reportInt(vm_ia_firstQamFrequencyTuned);
reportInt(vm_ia_firstQamVideoPids);
reportInt(vm_ia_firstQamAudioPids);

}

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 24

VII. CONCLUSION
As a result of the research, views on multi-level automatic

synthesis of reconfigurable programs for smart devices are
expanded. A new model of a reconfigurable program is
proposed in the form of a relatively finite automation. A new
task of multi-level deductive synthesis of programs is
mathematically formulated and an algorithm for its solution is
developed. Analytic expressions are obtained to evaluate the
complexity of multi-level automatic program synthesis.

Suggested model and method form the new approach to
formalization of the process of building reconfigurable
systems and automatic synthesis of applied programs. Usage of
multilevel description of analyzed processes allows divide
complex problems into smaller one, for solving which one can
find relatively simple solutions.

Realization of descending scheme of synthesis allows find
enough quickly needed solutions. Other useful feature of
suggested approach is absence of need rigorous proof of
existence of solution on the upper levels. Received
intermediate solutions can be corrected and on their base one
can receive corrected solutions on lower levels. Suggested
approach can be effectively used for increasing the level of
intelligence of many different information systems that belong
to different subject domains.

REFERENCES
[1] J. A. Robinson. A machine – oriented logic based on resolution

principle, Journal of the ACM. 12 (1965) 23 – 41.
[2] C. Chang, R. Lee. Symbolic Logic and Mechanical Theorem Proving,

New York: Academic, 1973.
[3] S. Yu. Maslov. Teoria deduktivnykh system i ee primeneniya (Theory of

Deductive Systems and Its Applications), Moscow: Radio I Svyaz’,
1986.

[4] E. Kh. Tyugu, M. Ya. Kharf. Algorithms for structural synthesis of
programs, Programmirovanie. 4 (1980) 3 – 13.

[5] Iskusstvennyi intellect (Artificial Intelligence), vol. 2: Modeli I metody.
Spravochnik (Models and Methods. Handbook), Pospelov, D.A. Ed.,
Moscow: Nauka, 1990.

[6] V. Yu. Osipov. Synthesis of resultative programs to control information
and computational resources, Prib. Sist. Upr. 12 (1998) 24 – 27.

[7] V. Yu. Osipov. Automatic Synthesis of Action Programs for Intelligent
Robots, Program. Comput. Software. 42 (3) (2016) 155 – 160.

[8] Yu. Korukhova. An approach to automatic deductive synthesis of
functional programs, Annals of Mathematics and Artificial Intelligence.
50 (3 – 4) (2007) 255 - 271.

[9] [9] V. B. Novoseltsev. Synthesis of parallel recursive programs in
structural functional models, Program. Comput. Software. 33(5)
(2007) 293 – 299.

[10] G. Giacomo, F. Patrizi, S. Sardina. Automatic behavior composition
synthesis, Artificial Intelligence. 196 (March 2013) 106 -142.

[11] C. Kreitz. Program Synthesis Chapter III.2.5 of Automated Deduction –
A Basis for Application. Kluwer Publ (1998) 105 – 134.

[12] A. Avellone, M. Ferrari, P. Miglioli. Synthesis of Programs in Abstract
Data Types. LOPSTR 1998: Logic – Based Program Synthesis and
Transformation. (1998) 81 – 100.

[13] S. Srivastava, S. Gulwani, J.S. Foster. Template – based program
verification and program synthesis/ International Journal of Software
Tools for Technology Transfer. 15 (5) 497 – 518.

[14] A. Tahat, A. Ebnenasir. A Hybrid Method for the Verification and
Synthesis of Parameterized Self-Stabilizing Protocols. LOPSTR 2014:
Logic – Based Program Synthesis and Transformation. (2014) 201 -
218.

[15] E. Kant. On the efficient synthesis of efficient programs, Artificial
Intelligence. 20 (3) (May 1983) 253 -305.

[16] W. Bibel, D. Korn, C. Kreitz, F. Kurucz, J. Otten, S. Schmitt, G.
Stolpmann. A Multi-level Approach to Program Synthesis, LOPSTR
1998, 1- 27.

[17] P. Fu, E. Komendantskaya. A Type – theoretic Approach to Resolution,
LOPSTR 2015, 91 – 106.

[18] F. Wagner, R. Schmuki, T. Wagner, P. Wolstenholme. Modelind
Software with Finite State Machines: A Practical Approach, Auerbach
Publications, 2006.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 25

